If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x-17280=0
a = 1; b = -6; c = -17280;
Δ = b2-4ac
Δ = -62-4·1·(-17280)
Δ = 69156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{69156}=\sqrt{36*1921}=\sqrt{36}*\sqrt{1921}=6\sqrt{1921}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{1921}}{2*1}=\frac{6-6\sqrt{1921}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{1921}}{2*1}=\frac{6+6\sqrt{1921}}{2} $
| 180=2x+(x+60) | | 96(p-1)=19 | | 3n+15=-21 | | -48+h=-86 | | 0.8(10x+16)=3.2(0.2x+5) | | 25m+75=875 | | b-1=-14+2b | | 3x+2/2=9.5 | | 11.5=(x-3)^(2) | | -5x+8=24 | | 3x-1(6x+8)=3(4x-1) | | 10-3m=-23 | | n2=-2n+8 | | 7p+4=3p-127p+4=3p-12 | | 5m+30=15 | | 6m+5=17m= | | 24-x=-31 | | 5(p-4)=17 | | 3x-(6x+8)=3(4x-1) | | 5m+15=155 | | x*0,5-4=-12 | | -6=x/10-1 | | s/13+6=7 | | 10(t+82)=100 | | 6=x=42=-21 | | 3+4x=28-4 | | 17-(b)=17.5 | | c-15=-8 | | k+20=58 | | 17-b=17.5 | | 2(x+5)=4x+9 | | 2(3x+5)=22+5x-3x. |